Thunder SDR Waveform Development and Test System

General Description

The Thunder Software Defined Radio (SDR) Waveform Development and Test System is an affordable, wide-band, high performance baseband and RF development and test platform. Thunder is a full duplex COTS solution providing signal communications systems engineers and waveform developers with a fully functional, reconfigurable radio development platform. The direct conversion architecture provides continuous RF coverage over the full operating range.

The configuration includes a full-duplex RF transceiver, a consolidated digital system with the TI OMAP 37x GPP/DSP processor + Xilinx Spartan-6 FPGA, and a wide-band RF front end module, all operating in an open source Linux-based environment and enclosed in a 1U housing.

The RF System includes a full-duplex wide-band transceiver that allows waveform and SDR developers to work much closer to the low-power real-time OMAP 37x processor for truly embedded wireless applications.

Benefits

- Reduces cost and time-to-market
- Wide RF operating range:
 30 MHz to 1600 MHz or 400 MHz to 4000 MHz
- Frequency covers a variety of wireless protocol applications— UHF, White Space, WiFi, WiMax, LTE
- Enables SDR development on OMAP platform
- OMAP platform supports development of waveforms and applications on Linux, VxWorks, or Android Operating Systems
- Includes fast-start templates, reference waveform implementation; software tool suite and support packages available
- Rugged 1U enclosure with removable cover for access to the hardware

Applications

- Commercial PHY-MAC waveform and applications development
- Cognitive and spectrally fragmented waveform development
- Networked and spectrum agile waveform development
- Whitespace and Dynamic Spectrum Access research

RF System Features

- Full-duplex (FDD, TDD) transceiver architecture with programmable signal bandwidths from 40 KHz to 40 MHz
- Frequency range options:
 30 MHz to 1600 MHz or 400 MHz to 4000 MHz
- Dual-channel ADCs, 12-bits at 100 Msps
- Dual-channel DACs, 16-bits at 100 Msps
- Direct Conversion Architecture
- Front End Module (FEM) covering each frequency option for low noise amplification and preselect filtering

Digital System Features

- Low cost baseband platform based on TI's OMAP 37x multimedia applications processor
- Advanced Superscaler ARM© Cortex™ RISC core with a C64x+ DSP core
- Xilinx Spartan-6 FPGA
- Multiple data and user interfaces
- Integrated GPS receiver with accurate 1-PPS output

Thunder HW Configuration

- DataSoft RF System for RF Transceiver/FEM
- DataSoft Digital System for GPP/DSP/FGPA

Tempe, AZ, USA • 800-797-7153 x419 • <u>www.datasoft.com</u> • <u>sales@datasoft.com</u>

Thunder Block Diagram

The TI OMAP platform supports development of waveforms and applications on Linux or Android operating systems

Integrated Software Probes .. Optional software tools for waveform debugging:

The Thunder Probe Tool-Box is a optional set of software probes specifically designed to reduce turn-around time for developing a new waveform on the Thunder platform. The probes provide a focused multi-processor debugging capability during integration.

- **Probes** provide access to critical waveform and platform traffic on multiple processors and the interaction between the processors including data capture, data inject, memory and command probes.
- Porting engineer can study real-time data flows in any connected waveform with complete ease
 Useful for: Validating WF and platform data by probing points in the GPP and DSP

Software probes improve developer's productivity, thus reducing cost and schedule

Tempe, AZ, USA • 800-797-7153 x419 • <u>www.datasoft.com</u> • <u>sales@datasoft.com</u>

Thunder SDR Waveform Development and Test System

Thunder Processor Framework

GPP FPGA DSP DM3730 ARM Cortex-A8 DM3730 C64x+

1 GHz

800 MHz

Spartan-6 LX75 or LX150

Target: Provided with Thunder

Operating System DSP/Bios Arago Linux 2.6.32 Kernel

Toolchain Mentor Graphics Sourcery G++ Lite TMS320C6000 C/C++ Code

Generation Tools Development Tools)

LX150—Xilinx ISE tools required

• Boot loaders and kernel load from SD **Load Mechanism**

Loaded from GPP with DSP/Bios DSPLink interface

Loaded by GPP with Thunder driver

LX75—Xilinx ISE WebPack (Free FPGA

• Root Filesystem mounts from SD card

or NFS

Developers Kit • Thunder drivers for transceiver control • Thunder drivers for transceiver • ISE project with source code for WF and data communication

> • Sample applications to demonstrate interfaces

• Thunder PSP with drivers for Ethernet, • Based on DSP/BIOS and audio, UART, USB, MMC/SD interfaces

Control Panel HTTP GUI

• GNU Radio FM, DQPSK demo apps with Thunder interface blocks

· Probes for data and resources

data communication

· Sample applications to demonstrate interfaces

DSPLink

FPGA project including dedicated User Block for custom applications

• Basic FPGA framework and data path connectivity

• 16 user-defined D/A converter probe points (requires DAC accessory)

Rear panel user-defined GPIOs

Additional Tools

TI DVSDK with array of ARM tools

TI DVSDK with array of DSP tools

Host Development Environment: Provided with Thunder (or free download with instructions in documentation)

Operating System Ubuntu 10.04 LTS:

Virtual Machine included

 Ubuntu 10.04 LTS · Windows for CCS 4.X Windows or Linux

Connectivity Tera Term or any terminal program

Available Development Tools: User must purchase

IDE Any Linux IDE Code Composer Studio

Spectrum Digital XDS510USB Plus Xilinx Platform Cable USB II Probe **Emulator/Debug GDB**

Packages Wide range of open source software can TI and third party C64x+ Xilinx and third party FPGA cores be cross compiled for Thunder components

GPP, DSP, and FPGA resources are available for maximum design flexibility

Basic infrastructure and connectivity are in place for processing elements to jumpstart waveform development

Tempe, AZ, USA 800-797-7153 x419 www.datasoft.com sales@datasoft.com

Thunder SDR Waveform Development and Test System

-65 dBc (Th-L)

-55 dBc (Th-L)

Specifications

Overall

Full Duplex Symbol Rates	up to 20 Msym/s
Frequency Stability	± 2.5 ppm
Power Consumption	
Operating Temperature Range	
Storage Temperature Range	
<u>Transmitter</u>	
Output Impedance (nominal)	50 ohms
Output Return Loss	
Programmable Signal RF Bandwidth	
(Continuous)	40 KHz to 40 MHz
Max DAC Rate (16-bit)	
Frequency Resolution	
P1dB (FEM Dependent)	
Output IP3	
Thunder-H SSB Phase Noise: Offset from Fc	enter = 1 GHz
100 Hz	-90 dBc/Hz
1 KHz	
10 KHz	105 dBc/Hz
100 KHz	
1 MHz	
10 MHz	
Thunder-L SSB Phase Noise: Offset from Fce	enter = 400 MHz
100 Hz	-95 dBc/Hz
1 KHz	-110 dBc/Hz
10 KHz	
100 KHz	
1 MHz	

Included Software and Documentation

• Embedded Arago Linux Kernel from TI with Device Drivers for: UART, Sound Device, SD Card and Ethernet

10 MHz_____-135 dBc/Hz Carrier Feedthrough _____-55 dBc (Th-H)

Sideband Suppression -42 dBc (Th-H)

- Software Development Kit (SDK)
 - Source Code for: U-Boot, GNU Radio, RF Device Drivers, GNU Radio RF Blocks, SDR System Control Panel
 - Root File System containing all precompiled source code
 - STS memory, commander, data probes
- Development environment WF implementation w/ customization available
- Supported Software Loading Environments:
 - Standalone (NAND+SD Card)
 - Network (NAND+TFTP or NAND+NFS)
- Fast-start templates and example waveforms

400 MHz to 4000 MHz
30 MHz to 1600 MHz
13.25" x 8" x 1.75"
< 4 lb

Receiver

Receiver		
Output Impedance (nominal)	50 ohms	
Output Return Loss	_10 dB	
Programmable Signal RF Bandwidth		
(Continuous)		
Max ADC Rate (12-bit)	_100 Msps	
Noise Figure (FEM Dependent)	< 10 dB	
Maximum Composite Input Power	_+20 dBm	
Expected Input Power	20 dBm	
Input IP3	_+16 dBm	
Thunder-H SSB Phase Noise: Offset from Fcenter = 1 GHz		
100 Hz	90 dBc/Hz	
1 KHz	96 dBc/Hz	
10 KHz		
100 KHz		
1 MHz		
10 MHz		
Thunder-L SSB Phase Noise: Offset from Fcenter = 400 MHz		
100 Hz	92 dBc/Hz	
1 KHz		
10 KHz		
100 KHz		
1 MHz		
10 MHz		
Baseband Gain		
Sensitivity (40 KHz)		
Channel Selectivity 3 BW from Fcenter		
Channel Selectivity 5 BW from Fcenter	50 dBc	

The above specifications contain engineering estimates that are believed to be accurate and reliable. The information is subject to change without notice.

> **DataSoft Corporation** 1275 W. Washington St. Suite 106 Tempe, AZ 85281 1-800-797-7153 x419 sales@datasoft.com